Sie kombiniert das Nichts aus dem vorherigen UNIVERSUM mit der URDIMENSION und der Realität von Einstein.
bei Copilot können Sie auch weiter mitdiskutieren. bitte anklicken.

Erklärung der Variablen in der Stringonentheorie
In der Theorie sind Stringonen keine bloßen physikalischen Objekte wie Strings in der Stringtheorie, sondern ontologische Urformen – Träger von Möglichkeit, Struktur und Spannung. Sie stammen aus der Urdimension, einer prä-energetischen, prä-zeitlichen Sphäre, in der noch keine physikalische Realität im klassischen Sinn existiert.
EReal EReal:
- Bedeutung: Dies ist die reale Energie eines Systems, das aus Strings oder Stringonen besteht. In der Stringonentheorie wird die Energie als eine Funktion der zugrunde liegenden Urdimesnion und Wechselwirkungen in der Nulldimension betrachtet. Wechselwirkung zwischen Urdimesnion und Strings.
DMDM:
- Bedeutung: Diese Variable könnte für eine Dimension oder Dichte stehen, die die Eigenschaften der Stringonen beschreibt. Die Dichte der Stringonen, keine Masse.
ΘOnt ΘOnt:
- Bedeutung: Diese Größe könnte einen Parameter darstellen, der die ontologischen Eigenschaften der Stringonen beschreibt. Es könnte sich um ein Maß für die Wechselwirkungen oder die Struktur der Stringonen handeln, die die physikalischen Eigenschaften des Universums beeinflussen.
ΓStrukturΓStruktur:
- Bedeutung: Dies könnte ein Faktor sein, der die geometrische oder strukturelle Eigenschaft der Stringonen beschreibt. In der Stringonensingualität der Urdimension. In der Stringonentheorie ist die Struktur der Dichte entscheidend, um das Verhalten und die Wechselwirkungen der Stringonen zu verstehen. Wechselwirkungen mit den Strings! Das Zittern und das Schwingen.
mm:
- Bedeutung: Die Masse eines Stringons nach der Dichte der Urdimension hin zur Realität des Universums. In der Stringonentheorie wird die Masse durch die spezifische Konfiguration und die Zittermodi der Stringonen bestimmt. Oder der Dichte der Möglichkeiten .
cc:
- Bedeutung: Die Lichtgeschwindigkeit, die eine fundamentale Konstante in der Physik darstellt und in vielen Gleichungen, einschließlich der Relativitätstheorie, eine zentrale Rolle spielt.
Interpretation der Gleichung in der Stringonentheorie
- Energie und Struktur: Die Gleichung zeigt, dass die reale Energie eines Systems von verschiedenen Faktoren abhängt, die die Struktur und die Eigenschaften der Stringonen beeinflussen. Diese Faktoren könnten die Wechselwirkungen zwischen den Stringonen und deren dichte Anordnung umfassen.
- Einfluss der Dimensionen: Die Variablen DMDM, ΘOntΘOnt und ΓStrukturΓStruktur könnten alle Aspekte der Dimensionen und deren Einfluss auf die physikalischen Eigenschaften der Stringonen darstellen.
Fazit
In der Stringonentheorie von Johannes Schütte wird die Gleichung EReal=(DM⋅ΘOnt⋅ΓStruktur)⋅mc2EReal=(DM⋅ΘOnt⋅ΓStruktur)⋅c2m als eine Beschreibung der Energie eines Systems von Stringonen betrachtet. Diese Perspektive berücksichtigt die komplexen Wechselwirkungen und strukturellen Eigenschaften, die das Verhalten der Stringonen bestimmen.
Sie verbindet die Ontologie mit der realen Physik nach Einstein.
Wenn du weitere Details benötigst oder spezifische Aspekte der Stringonentheorie vertiefen möchtest, lass es mich wissen!

Wichtige Punkte
- Stringonen sind ontologische Urformen, die aus der Urdimension stammen und keine physikalischen Objekte im klassischen Sinn darstellen.
- Die reale Energie (EReal) eines Systems hängt von der Urdimension und deren Wechselwirkungen ab.
- DM könnte für eine Dimension oder Dichte stehen, die die Eigenschaften der Stringonen beschreibt, während ΘOnt die ontologischen Eigenschaften und ΓStruktur die geometrische Struktur der Stringonen darstellt.
- Die Masse eines Stringons wird durch die spezifische Konfiguration und die Zittermodi bestimmt, während die Lichtgeschwindigkeit (c) eine fundamentale Konstante bleibt.
- Die Gleichung EReal = (DM⋅ΘOnt⋅ΓStruktur)⋅mc² beschreibt die Energie eines Systems von Stringonen und berücksichtigt komplexe Wechselwirkungen und strukturelle Eigenschaften.
- Die Theorie verbindet ontologische Konzepte mit physikalischen Prinzip-
Was sind Stringonen?
Stringonen sind konzeptionelle Entitäten in der Stringonentheorie, die als ontologische Urformen betrachtet werden. Sie sind nicht einfach physikalische Objekte wie die Strings in der traditionellen Stringtheorie, sondern tragen die Möglichkeit, Struktur und Spannung in einem universellen Kontext. Hier sind einige wichtige Merkmale:
- Ontologische Urformen: Stringonen repräsentieren grundlegende Prinzipien und Strukturen, die die physikalische Realität beeinflussen.
- Urdimension: Sie stammen aus einer prä-energetischen und prä-zeitlichen Sphäre, die als Urdimension bezeichnet wird. In dieser Dimension existiert noch keine physikalische Realität im klassischen Sinn.
- Wechselwirkungen: Stringonen interagieren miteinander und mit der Urdimension, was ihre Eigenschaften und das Verhalten im Universum bestimmt.
Unterschiede zu Strings in der Stringtheorie
Konzeptuelle Basis:
- Strings: In der traditionellen Stringtheorie sind Strings eindimensionale Objekte, die Schwingungen und verschiedene Energieniveaus annehmen können. Sie bilden die grundlegenden Bausteine der Materie und der fundamentalen Kräfte.
- Stringonen: Stringonen sind eher ontologische Konzepte und weniger als physikalische Objekte zu verstehen. Sie beschreiben die Struktur und die Möglichkeiten, die das Universum formen.
Dimensionale Herkunft:
- Strings: Existieren in einer eindimensionalen Dimension, wo sie als fundamentale Teilchen fungieren.
- Stringonen: Entstehen aus der Urdimension, die jenseits der klassischen Raum-Zeit liegt und keine physikalische Realität hat.
Physikalische Eigenschaften:
- Strings: Können direkt mit physikalischen Eigenschaften wie Masse und Energie in Verbindung gebracht werden.
- Stringonen: Ihre Eigenschaften sind eher konzeptionell und beziehen sich auf die Wechselwirkungen und Strukturen, die sie im Universum erzeugen.
Fazit
Stringonen erweitern das Verständnis der grundlegenden Strukturen des Universums über die physikalischen Objekte hinaus, die in der klassischen Stringtheorie behandelt werden. Sie bieten eine tiefere ontologische Perspektive auf die Realität und deren fundamentale Eigenschaften.